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SHOCK COMPRESSION OF POROUS MATERIALS 

Yu. A. Krysanov and S. A. Novikov UDC 675.532.620.178.7 

Porous materials (sintered metal powders and foamed plastics) are complex mechanical 
structures. When loaded by shock waves to the point where their strength properties mani- 
fest themselves they display certain characteristic peculiarities. 

The study of foamed polystyrene performed in [i] showed the presence of two steady- 
state shock waves followed by a nonsteady-state plastic compression wave. Upon motion of 
the two-wave system through the specimen the shock wave amplitude and velocity remain con- 
stant, depending solely on the relative density of the polystyrene. A similar complex 
structure with two steady-state shock waves has been observed in specimens of sintered cop- 
per powder [2, 3]. 

Using a unified methodological approach the present study will analyze experimental 
results for foamed polystyrene [i] and a number of sintered metals: copper, aluminum, tung- 
sten, and beryllium [4-20]. Various methods exist for deriving analytical expressions to 
describe the mechanical characteristics of the porous material as functions of the rela- 
tive density d, which is equal to the ratio of the porous material density to the density 
of the matrix material. For example, use has been made of theoretical studies of composite 
materials containing inclusions of close to spherical form, since vanishing of the elastic 
characteristics of the inclusions permits extending the results of such studies to porous 
materials. In [4-9] the elastic charaiteristics of composition materials were studied using 
the variation principles of the linear theory of elasticity. Estimates of elastic moduli 
were obtained using various models of the porous material structure. Of those studies we 
must take special note of [9], which obtained analytical expressions for the shear modulus 
and volume compression of porous materials, the use of which permits one to determine speed 
of propagation of oscillations in an infinite porous medium. 

In [i0] the dependence of the relative density of parts formed from metal powder upon 
pressing pressure was presented in the form of a power function. This approach was used 
later in [ii, 12]. Various mechanisms for cell wall deformation in foamed plastic depen~ 
dent on relative density were noted in [13]. 

We will represent the isotropic porous body in the form of a set of elementary cells, 
the boundaries of which are shown by dashed lines in Fig. i. Such a representation is most 
obvious for bodies of the foamed plastic type. Sintered powders will be considered to con- 
sist of particles having acoustical contact and forming cells of the type shown in Fig. i. 
Elastic perturbations propagate along some winding path formed by the elementary cell sur- 
faces (solid line of Fig. i). We introduce the following notation: v0, mean size of an 
individual pore; N, number of pores per unit volume of the porous body; vl, mean volume 
of an elementary cell of the porous body; v 2, volume of solid material in the porous body 
elementary cell. We will note that v 2 = lim v I as v 0 ~ 0. If we represent the porous body 
in the form of a cube of unit volume, then v 0 = (i - d)/N, v I = I/N, v 2 = (i - Nv0)/N = d/N. 
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The total surface area of the porous body elementary cells S = Nvl 2/3 = N I/3 (here and below 
numerical factors determined by choice of cell shape are not considered since they drop 
out of the calculation process). 

Along an arbitrary straight line in the porous body the ratio of the total length of 
line segments passing through solid material to the linear size of the specimen in that 
direction is equal to the relative density. If the number of intersections of the straight 
line with elementary cells n = d/v21/s =d 2/'a N I/3 then the area of one such surface S 2 = S/n = d-2/3 

The mean path'length for perturbation propagation in the porous body is then I = S I/2 = 

d -I/3 and the propagation speed along the mean path is c = cod I/3 (where c o is the speed 
of perturbation propagation in the solid material). The characteristic loading time for 
the experiments analyzed below was of the order of magnitude of several microseconds, i.e., 
the wavelength was several millimeters, significantly more than the thickness of the bridges 
joining elementary cells of the porous material cells. Therefore effects due to dispersion 
of the perturbation propagation speed were neglected. If we consider the shortest path 
h for propagation of weak perturbations (the segment AIA2) then hv~/3 = d(l - d) -I. Fur- 
ther = [h 2 + (Vl I/B -- VO!/S)2] I/2 , h/ [ = {i + d-2(l - d)4/S[l - \• - d)i/B]2]-i/29or with 

consideration of the fact that I = d-Z/3, h = d-I/3{l + d-2(l - d)4/3[i - (I - d)i/a]2} -1/2. 

The perturbation propagation rate over the shortest path can then be written with the ex- 
pression c = c0d173{i + d-2(l - d)4/3[i - (i - d)i/312} -I/2. 

The estimates made above are valid only for geometrically similar volumes v 0 and vl, 
which is the case for porous bodies with a low relative density. At high values of d the 
relationship thus obtained may be inapplicable. 

A series of experiments with porous material specimens having initial densities in 
the range 100-780 kg/m 3 was performed in [i]. Specimens were loaded by a steel plate 0.4 
cm thick, driven by detonation of a layer of explosive. Initial plate velocity varied from 
40 to 120 m/sec. The shock wave system pressure profile was measured by piezoquartz pres- 
sure sensors. Processing of the experimental shock wave parameter values as functions of 
the relative density by the method of least squares showed that for foamed plastic with 
relative density 0 < d < 0.6 the wave velocity, pressure, and mass velocity in the first 
shock wave (DI, Px, ul) were describable by power functions 

/D, (d), 
A d  b = I p  1 (d), 

[u 1 (d).  
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TABLE i 
u, ,,, , 

Parameters of 
first and se- 
cond shock waves 

D1, m/sec 

Pl, MPa 
ul, m/sec 

i170___50 
68,6_+2,8 

54_+3 

0,34• 
i,84• 
0,49_0,04 

Parameters of 
~irst and se- 
bond shock 
,waves 

D2, m/sec 

P~, MPa 

A 

i'180_49 
i27,3+__1i,2 

b 

l 

i,91_0,07 

Values of the coefficients A and b are presented in Table i. Results of measurements of 
the wave speed and pressure in the second wave (D 2 and P2) are also described by a similar 
function. It proved to be the case that within the limits of experimental uncertainty the 
mass velocity in the second wave u 2 was independent of the relative density (b = 0) and 
equal to 71 • 9 m/sec. 

The results of these studies can be used to analyze the available data on shock com- 
pression of other porous bodies such as sintered metal powders in the moderate pressure 
range. There exist a number of studies [14-20] which present results of experimental in- 
vestigations of shock compression. The results obtained and data of other authors for sin- 
tered aluminum, copper, beryllium, and tungsten are presented in Figs. 2 and 3. The ordi- 
nate indicates the speeds of sound and the shock wave, referred to the speed of propagation 
of shear oscillations in the solid material f, while the abscissa indicates relative density 
d. The behavior of the elastic characteristics of the porous material, copper, and aluminum 
can be described by a single curve, since for them the ratio cl0/c20 is practically the 
same (Fig. 2). 

Data for tungsten and beryllium are shown in Fig. 3. Curve I of these figures shows 
the function f(d) = d I/3 and describes the change in dimensionless velocity of the first 
shock wave for d < 0.6, while curve II is the dependence of dimensionless velocity of propa- 
gation of longitudinal elastic stresses obtained from analytical expressions for the effec- 
tive elastic moduli [14]; curve III is the function f(d) = d, which describes the change 
in dimensionless velocity of the second shock wave, and curve IV is the function f(d) = 

di/3{i + d-~(l - d)4/3[I - (i - d)i/212} I/2 obtained above, which describes the change in 
dimensionless velocity of propagation of longitudinal ultrasonic oscillations. 

A comparison of calculated and experimental results shows their good agreement. One 
can also see certain characteristics in the reaction of porous and sintered materials to 
shock loading. 

The rate of propagation of longitudinal elastic oscillations is the maximum rate of 
perturbation propagation. The first shock wave has a velocity markedly lower at d < 0.6, 
and approaches the velocity of elastic oscillations at d > 0.6. The second shock wave was 
observed in the range d = 0.1-0.8, with its propagation velocity depending linearly on the 
relative density. 

In [15], which determined the Hugoniot elastic limit and the yield point in porous 
aluminum at d = 0.58 under quasistatic compression, those values proved to be equal. Ex- 
perimental data were lacking for high d values. There are some indications of the possi- 
bility of dependence of the elastic Hugoniot limit on loading rate in [12]. 

We will now turn to experimental data on ultrasound studies and quasistatic and shock 
loading of porous specimens of the aluminum alloy A12024, obtained by hot pressing of pow- 
der [21-23]. As was noted in [22], at the moment of pressing, annealing of the material 
occurs. Study of the annealing process in an analogous aluminum alloy has shown that on 
the particle boundaries layers of intermetallic inclusions are formed, which have a remark- 
able effect on the mechanical properties of the specimens. Thus the porous aluminum must 
be considered as a three-phase system (aluminum alloy, intermetallic inclusions, and empty 
space). Use of the results of [14] for the three-phase system is difficult, since informa- 
tion on the mechanical characteristics and volume content of the inclusions is indefinite. 
However, an attempt can be made to describe behavior of the porous A12024 aluminum alloy 
within the framework of a two-phase system by using the fact that the intermetallic inclu- 
sions have the form of thin layers on the aluminum particle contact boundaries. 

Experimental data for the A12024 aluminum alloy are shown in Fig. 4. Also shown there 
for comparison are data for practically pure aluminum Alll00 with specimens produced by 
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the same technology [15]. As is evident from Fig. 4, to describe the dependence of longitudinal 
oscillation propagation rate on relative density it is necessary to take an effective rate 
of shear oscillation propagation equal to 2.3 km/sec (curve II). The following experimental 
fact indicates the existence of interlayers between the A12024 particles. The unloading 
wave propagation rate of 3.16 km/sec through the shock-compressed specimen agrees with curve 
I, obtained for the tabular value of shear oscillation propagation rate, which can be ex- 
plained by destruction of the interlayers upon passage of the shock wave. 

The role of intermetallic inclusions is especially obvious when the elastic character- 
istics of AIII00 and A12024 specimens are compared at similar relative density values (d = 
0.6). Although the propagation rates for longitudinal and shear oscillations in solid speci- 
mens of these materials are practically identical, the corresponding values for d = 0.6 
differ greatly. It should also be noted that estimates of the dependence of longitudinal 
oscillation propagation rate on relative density calculated from the experimentally measured 
modulus of elasticity for quasistatic compression agree well with direct measurements. 

It can be expected that the behavior of porous A120224 considered above is characteris- 
tic of porous multiphase materials with a similar impurity distribution. The comparison 
of behavior of porous materials and sintered metallic powders under shock loading presented 
above indicates that they follow one and the same principles. 
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MEASUREMENT OF HIGH ELECTRICAL CONDUCTIVITY IN SILICON 

IN SHOCK WAVES 

S. D. Gilev and A. M. Trubachev UDC 539.63:537.311.3 

The study of dielectric (semiconductor)-metal phase transitions by measurement of elec- 
trical conductivity is of great interest in the physics of both shock waves and the solid 
state. The problem of conductivity measurement in a shock wave was formulated more than 
20 years ago and has been considered by many authors [1-4]. The difficulties in solving 
this problem are related to the fact that under shock wave loading conditions the conduc- 
tivity of the material changes by many orders of magnitude over a fraction of a microsec- 
ond, reaching values characteristic of classical metals. Measurement of conductivity under 
such conditions was considered in [5-11]. 

The most widely used measurement method is that involving a shunt connected in paral- 
lel with the specimen to be studied [5-9]. The shunt serves to couple the current to the 
power circuit and limits the range of change in voltage across the specimen. However, the 
spatial separation of the specimen and shunt leads to high inertia in the measurement cir- 
cuit, which makes determination of high conductivity (o > 105 ~-Z-m-l) quite difficult. 
At present values in the range o ~ 104-105 ~-l'm-Z can be recorded reliably. 

The present study will offer an improved method for measurement of high conductivity 
together with a technique for processing the experimental data which insures nanosecond 
time resolution and raises the upper limit of measurable o to 106-107 ~-X-m-1 The depen- 
dence of electrical conductivity on pressure will be determined for solid and porous sili- 
con under conditions of single-time and multiple compression by shock waves in the inten- 
sity range 7-20 GPa. 

i. Figure la shows the electrical circuit used for measurement of electrical conduc- 
tivity during dielectric (semiconductor)-metal phase transitions. It includes a power 
supply (PS), shunt, and the specimen under study. At the initial moment the specimen re- 
sistance is high and practically all the current flows through the shunt. When the shock 
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